微波的基本性質通常呈現(xiàn)為穿透、反射、吸收三個特性。對于玻璃、塑料和瓷器,微波幾乎是穿越而不被吸收。對于水和食物等就會吸收微波而使自身發(fā)熱。而對金屬類東西,則會反射微波。從電子學和物理學觀點來看,微波這段電磁頻譜具有不同于其他波段的如下重要特點:
穿透性
微波比其它用于輻射加熱的電磁波,如紅外線、遠紅外線等波長更長,因此具有更好的穿透性。微波透入介質時,由于微波能與介質發(fā)生一定的相互作用,以微波頻率2450兆赫茲,使介質的分子每秒產生24億五千萬次的震動,介質的分子間互相產生摩擦,引起的介質溫度的升高,使介質材料內部、外部幾乎同時加熱升溫,形成體熱源狀態(tài),大大縮短了常規(guī)加熱中的熱傳導時間,且在條件為介質損耗因數(shù)與介質溫度呈負相關關系時,物料內外加熱均勻一致。
選擇性加熱
物質吸收微波的能力,主要由其介質損耗因數(shù)來決定。介質損耗因數(shù)大的物質對微波的吸收能力就強,相反,介質損耗因數(shù)小的物質吸收微波的能力也弱。由于各物質的損耗因數(shù)存在差異,微波加熱就表現(xiàn)出選擇性加熱的特點。物質不同,產生的熱效果也不同。水分子屬極性分子,介電常數(shù)較大,其介質損耗因數(shù)也很大,對微波具有強吸收能力。而蛋白質、碳水化合物等的介電常數(shù)相對較小,其對微波的吸收能力比水小得多。因此,對于食品來說,含水量的多少對微波加熱效果影響很大。
熱慣性小
微波對介質材料是瞬時加熱升溫,升溫速度快。另一方面,微波的輸出功率隨時可調,介質溫升可無惰性的隨之改變,不存在“余熱”現(xiàn)象,極有利于自動控制和連續(xù)化生產的需要。
似光性和似聲性
微波熱壓罐波長很短,比地球上的一般物體(如飛機,艦船,汽車建筑物等)尺寸相對要小得多,或在同一量級上。使得微波的特點與幾何光學相似,即所謂的似光性。因此使用微波工作,能使電路元件尺寸減?。皇瓜到y(tǒng)更加緊湊;可以制成體積小,波束窄方向性很強,增益很高的天線系統(tǒng),接受來自地面或空間各種物體反射回來的微弱信號,從而確定物體方位和距離,分析目標特征。由于微波波長與物體(實驗室中無線設備)的尺寸有相同的量級,使得微波的特點又與聲波相似,即所謂的似聲性。例如微波波導類似于聲學中的傳聲筒;喇叭天線和縫隙天線類似與聲學喇叭,蕭與笛;微波諧振腔類似于聲學共鳴腔。
非電離性
微波的量子能量還不夠大,不足與改變物質分子的內部結構或破壞分子之間的鍵(部分物質除外:如微波可對廢棄橡膠進行再生,就是通過微波改變廢棄橡膠的分子鍵)。再有物理學之道,分子原子核在外加電磁場的周期力作用下所呈現(xiàn)的許多共振現(xiàn)象都發(fā)生在微波范圍,因而微波為探索物質的內部結構和基本特性提供了有效的研究手段。另一方面,利用這一特性,還可以制作許多微波器件。
信息性
由于微波頻率很高,所以在不大的相對帶寬下,其可用的頻帶很寬,可達數(shù)百甚至上千兆赫茲。這是低頻無線電波無法比擬的。這意味著微波的信息容量大,所以現(xiàn)代多路通信系統(tǒng),包括衛(wèi)星通信系統(tǒng),幾乎無例外都是工作在微波波段。另外,微波信號還可以提供相位信息,極化信息,多普勒頻率信息。這在目標檢測,遙感目標特征分析等應用中十分重要。